Work extremum principle: Structure and function of quantum heat engines

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantum thermodynamic cycles and quantum heat engines.

In order to describe quantum heat engines, here we systematically study isothermal and isochoric processes for quantum thermodynamic cycles. Based on these results the quantum versions of both the Carnot heat engine and the Otto heat engine are defined without ambiguities. We also study the properties of quantum Carnot and Otto heat engines in comparison with their classical counterparts. Relat...

متن کامل

Quantum heat engines and nonequilibrium temperature.

A pair of two-level systems initially prepared in different thermal states and coupled to an external reversible work source do not in general reach a common temperature at the end of a unitary work extraction process. We define an effective temperature for the final nonequilibrium but passive state of the bipartite quantum system and analyze its properties.

متن کامل

Mechanical equivalent of quantum heat engines.

Quantum heat engines employ as working agents multilevel systems instead of classical gases. We show that under some conditions quantum heat engines are equivalent to a series of reservoirs at different altitudes containing balls of various weights. A cycle consists of picking up at random a ball from one reservoir and carrying it to the next, thereby performing or absorbing some work. In parti...

متن کامل

An extremum principle of evaporation

[1] It is proposed, on the basis of an argument of thermodynamic equilibrium, that land-atmosphere interactive processes lead to thermal and hydrologic states of the land surface that maximize evaporation in a given meteorological environment. The extremum principle leads to general equations linking surface energy fluxes to surface temperature and soil moisture. The hypothesis of maximum evapo...

متن کامل

Molecular Heat Engines: Quantum Coherence Effects

Recent developments in nanoscale experimental techniques made it possible to utilize single molecule junctions as devices for electronics and energy transfer with quantum coherence playing an important role in their thermoelectric characteristics. Theoretical studies on the efficiency of nanoscale devices usually employ rate (Pauli) equations, which do not account for quantum coherence. Therefo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2008

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.77.041118